Tricks to solve Percentage Problems

Percentage is a fraction whose denominator is always 100. x percentage is represented by $x \%$.

To express $\mathrm{x} \%$ as a fraction :

We know
$\mathrm{x} \%=\mathrm{x} / 100$
Thus $10 \%=10 / 100$ (means 10 parts out of 100 parts)
$=1 / 10$ (means 1 part out of 10 parts)

To express \mathbf{x} / \mathbf{y} as a percentage :

We know that $\mathrm{x} / \mathrm{y}=(\mathrm{x} / \mathrm{y} \times 100)$
Thus $1 / 4=(1 / 4 \times 100) \%=25 \%$
and $0.8=(8 / 10 \times 100) \%=80 \%$

If the price of a commodity increases by $\mathbf{R} \%$, then reduction in consumption as not to increase the expenditure is-

```
[R/(100+R)\times100]%
```

If the price of a commodity decreases by $\mathbf{R} \%$, then the increase in consumption as not to decrease the expenditure is -
[$\left.{ }^{\mathrm{R}} /(100-\mathrm{R}) \times 100\right] \%$

Result on Population :

Let the population of a town be P now and suppose increases the rate of $\mathrm{R} \%$ per annum, then :

1. Population after n years $=P\left(1+{ }^{\mathrm{R}} / 100\right)^{\mathrm{n}}$
2. Population n years ago $={ }^{\mathrm{P}} /\left(1+{ }^{\mathrm{R}} / 100\right)^{\mathrm{n}}$

Result on Depreciation :

Let the present value of a machine be P. Suppose depreciates at the rate of R\% per annum Then :

1. Value of the machine after n Years
$=P(1-\mathrm{R} / 100)^{\mathrm{n}}$
2. Value of the machine n years ago
$={ }^{\mathrm{P}} /\left(1^{-} \mathrm{R} / 100\right)^{\mathrm{n}}$

- If A is $\mathrm{R} \%$ more than B , then B is less than A by
[$\mathrm{R} /(100+\mathrm{R}) \times 100] \%$
If A is $R \%$ less than B, then B is more than A by
[$\left.{ }^{\mathrm{R}} /(100-\mathrm{R}) \times 100\right] \%$
- Net \% change = x + y + xy/100

Some Observation

\#1

If 20% candidate failed in an exam then observations are

- 80% represent passed in exam
- 100% represent total appeared in exam
- $(80 \%-20 \%)=60 \%$ represent difference between passed and failed candidate in exam

\#2
If a number is increased by 25% then observations are
- 100% represent the old number
- 125% represent the new number.

\#3

Remember that Base in the given sentence (Question) is always 100% Eg. Income of Ram is increased by 20% In this sentence 100\% - represent the income of Ram
20\% - represent increment
120\% - represent new income of Ram.

Remember it :

$1=100 \%$
$1 / 2=50 \%$
$1 / 3=331 / 3 \%$
$1 / 4=25 \%$
$1 / 5=20 \%$
$1 / 6=16^{2} / 3 \%$
$1 / 7=14^{2} / 7 \%$
$1 / 8=12^{1} / 2 \%$
$1 / 9=11^{1} / 3 \%$

$$
\begin{aligned}
& 1 / 10=10 \% \\
& 1 / 11=9^{1} / 11 \% \\
& 1 / 10=8^{1} / 3 \% \\
& 1 / 13 \%=7^{9} / 13 \%
\end{aligned}
$$

$$
\begin{aligned}
& 25 \%=1 / 4 \\
& 6.25 \%=1 / 16 \\
& 125 \%=5 / 4 \\
& 150 \%=3 / 2 \\
& 200 \%=2 \\
& 350 \%=7 / 2
\end{aligned}
$$

Examples
 \#1

Q. If the difference between 62% of a number and $3 / 5$ th of that number is 36 . what is the number?
Sol:
Let the number be x .
Then $\mathrm{x} \times 62 \%-\mathrm{x} \times 3 / 5=36$
$\mathrm{x} \times 62 \%-\mathrm{x}$ V $60 \%=36(60 \%=3 / 5)$
$x \times 2 \%=36$
$\mathrm{x} \times 2 / 100=36$
$\mathrm{x}=36 \times 100 / 2=1800$
\#2
Q. 40% of Ram's income Rs. 1200 Then Find

1. 75% of Ram's income ?
2. $1 / 4$ part of Ram's income?
3. $\mathbf{1 / 3}$ part of Ram's income ?

Sol :
(1)
$40 \%=1200$ Rs.
$75 \%=1200 / 40 \times 75=2250$ Rs.
Trick: $1200 / 40 \times 75=$ Rs. 2250/-
(2)
40% of income = Rs. 1200
Then $1 / 4$ part (i.e. 25%) of Ram's
income $=1200 / 40 \times 25$
$=$ Rs. 750/- Ans
(3)

40\% of Ram's income
= Rs. 1200
i.e. 2/5 part of Ram's income
= Rs. 1200
Then total income of Ram
$=$ Rs. $1200 \times 5 / 2$
1/3 part of Ram's income
$=$ Rs. $1200 \times 5 / 2 \times 1 / 3$
$=$ Rs. 1000 Ans.
Trick :

$$
\begin{aligned}
& 1200 / 2 / 5 \times 1 / 3 \\
& =1200 / 2 \times 5 / 3=1000
\end{aligned}
$$

Page 5

