Simple Interest and Compound Interest

\# Examples

$$
\text { time } \times \text { rate }=\frac{\text { S.I }}{\text { Principal }} \times 100
$$

Amount $=$ S.I + Principal

\# 1

Find the simple interest, If

1. $\mathrm{P}=\mathrm{Rs} .1000, \mathrm{R}=20 \%$ per annum, $\mathrm{T}=4$ years.
2. $\mathrm{P}=\mathrm{Rs} .600, \mathrm{R}=5 \%$ per annum, $\mathrm{T}=4$ months.
3. $\mathrm{P}=$ Rs.200, $\mathrm{R}=6 \%$ per six months, $\mathrm{T}=3$ years.
4. $\mathrm{P}=\mathrm{Rs} .500, \mathrm{R}=2 \%$ per six months, $\mathrm{T}=5 / 2$ years.
5. $\mathrm{P}=$ Rs.400, $\mathrm{R}=3 \%$ per three months, $\mathrm{T}=2$ months.
6. $\mathrm{P}=\mathrm{Rs} .730, \mathrm{R}=10 \%$ per annum, $\mathrm{T}=120$ days.
7. $\mathrm{P}=$ Rs. $3000, \mathrm{R}=61 / 4$ per annum, $\mathrm{T}=$ period from 4th Feb to 18th Apr.

\# Solution

1. $4 \times 20 \times 10800$

$$
\begin{aligned}
& 20 \times 4=\frac{\text { S.I }}{1000} \times 100 \\
& \text { BankExamsToday.com } \\
& 20 \times 4 \times 10=\text { S.I }
\end{aligned}
$$

2. $\mathbf{2} \times 5=10$

$$
\begin{aligned}
& \frac{4}{42} \times 5=\frac{\mathrm{S.I}}{6 \mathrm{eH}} \times 100 \\
& \frac{1}{3} \times 5 \times 6{ }^{2}=\mathbf{S . I} \\
& {\left[\begin{array}{c}
\mathrm{S} . \mathrm{I}=5 \times 2 \\
= \\
=10
\end{array}\right]}
\end{aligned}
$$

3. $6 \times 2 \times 3 \times 2=72$

$$
(6 \times 2) \times 3=\frac{\text { S.I }}{200} \times 1.00
$$

$$
6 \times 2 \times 3 \times 2=\text { S.I }
$$

4. $5 \times 2 \times 5=50$

$$
\begin{aligned}
& \frac{5}{5} \times(2 \times 2)=\frac{\text { S.I }}{5 \rho 0} \times 1 \rho 0^{2} \\
& {[5 \times 2 \times 5=\text { S.II }]}
\end{aligned}
$$

5. $4 \times 2=8$

BankExamsToday.com
6. $73 / 3=24$

$$
\begin{aligned}
& e^{\frac{9}{12}} \times(3 \times 1)=\frac{S . I}{4.04} \times 100 \\
& 2 \times 4=\text { S.I }
\end{aligned}
$$

7. $37 \cdot 50$

$$
\begin{aligned}
& \mathrm{T}=(24+31+18) \text { days }=73 \text { days }=\frac{73}{365}=\frac{1}{5} \mathrm{yr} . \\
& \frac{1}{5} \times \frac{25}{4}=\frac{\mathrm{S} . \mathrm{I}}{3000} \times 100 \\
& \frac{5}{4} \times 30=\text { S.I }
\end{aligned}
$$

\#2

Find the following:

1. $\mathrm{P}=\mathrm{Rs} .100, \mathrm{R}=3 \%$ per annum, $\mathrm{T}=2$ year, $\mathrm{A}=$?
2. $\mathrm{P}=$ Rs. $500, \mathrm{R}=6 \%$ per annum, $\mathrm{T}=4$ months, $\mathrm{A}=$?
3. $\mathrm{P}=$ Rs. $400, \mathrm{R}=3.65 \%$ per annum, $\mathrm{T}=150$ days, $\mathrm{A}=$?
4. A $=$ Rs. $540, \mathrm{~S} . \mathrm{I}=$ Rs. $108, \mathrm{R}=5 \%, \mathrm{~T}=$?
5. $\mathrm{A}=$ Rs. $1,120, \mathrm{R}=5 \%, \mathrm{~T}=2^{2} / 5 \mathrm{yr}, \mathrm{S} . \mathrm{I}=$?

\# Solution:

1. $\mathrm{S} . \mathrm{I}=6 ; \mathrm{A}=\mathrm{S} . \mathrm{I}+$ principal $; A=6+100 \quad 106$

Method I

$$
\begin{aligned}
& \mathrm{r} \times \mathrm{t}=\frac{\mathrm{S} . \mathrm{I}}{\text { Principal }} \\
& 3 \times \mathscr{Q}=\frac{\mathrm{S} . \mathrm{I}}{100} \times 100 \\
& 6=\mathrm{S} . \mathrm{I} \\
& \text { Amount }=\mathrm{S} . \mathrm{I}+\text { Principal } \\
& \text { Amount }=6+100 \\
& \mathrm{~A}=106
\end{aligned}
$$

Method II
$A=P\left(1+\frac{R T}{100}\right)$
$\mathrm{A}=100\left(1+\frac{9 \times 2}{100}\right)$
$A=100 \times \frac{106}{100}$
Amount $=106$
2. $\mathbf{S . I}=10 ; A=S . I+P ; A=10+500 \quad 510$
3. $\mathrm{S} . \mathrm{I}=6 ; A=400+6406$

$$
\begin{aligned}
& \mathrm{R} \times \mathrm{T}=\frac{\mathrm{S} . \mathrm{I}}{\text { Principal }} \times 100 \\
& \frac{365}{1006} \times \frac{3}{365}=\frac{\text { S.I }}{400} \times 100 \\
& \frac{3}{9} \times 4^{2} \\
& 6=\text { S.I }
\end{aligned}
$$

$$
\text { Amount }=\mathrm{S} . \mathrm{I}+\text { Principal }
$$

$$
\mathrm{A}=6+400
$$

4. $\mathbf{T}=5 \mathrm{yr}$.

$$
\begin{aligned}
& \mathrm{R} \times \mathrm{T}=\frac{\mathrm{S} . \mathrm{I}}{\text { Principal }} \times 100 \\
& \mathrm{~T}=\frac{108}{5 \times 432} \times 100 \\
& {[27 \times 1=108] \text { Divisibility Method. } 9 \times 3=27} \\
& {[27 \times 16=492][1+0+8=9,4+3+2=9} \\
& \mathrm{T}=5 \mathrm{yr} \text {. } \\
& 9 \text { which is divisible by } 9 \text { \& } 3 \\
& \text { hence also divisible by } 27
\end{aligned}
$$

5. 120

\[

\]

\#3

1. A sum of money lent out at simple interest amounts to Rs. 720 after 2 years and to Rs. 1020 after a further period of 5 years. Find the sum and the rate $\%$.
2. Adam borrowed some money at the rate of 6% p.a. for the first two years, at the rate of 9% p.a. for the next three years, and at the rate of 14% p.a. for the period beyond five years. If he pays a total interest of Rs. 11,400 at the end of nine years , how much money did he borrow ?(Bank P.O 1999)
3. A person borrows Rs. 5000 for 2 years at 4% p.a. simple interest. He immediately lends it to another person at $61 / 4 \%$ p.a. for 2 years. Find his gain in the transaction per year.(S.S.C.2000)
4. A certain sum of money amounts to Rs. 1008 in 2 years and to Rs. 1164 in 3 ¹/2 years.Find the sum and the rate of interest?
5. The simple interest on a certain sum of money for $2^{1 / 2}$ years at 12% per annum is Rs. 40 less than the simple interest on the same sum for $3^{1 / 2}$ years at 10% per annum. Find the sum.

\# Solution

1. Principal $=600, R=\mathbf{1 0} \%$

$$
\begin{aligned}
& \mathrm{r} \times \mathrm{t}=\frac{\mathrm{SI}}{\mathbf{P}} \times 100 \\
& \mathrm{SI}=1020-720=300 \\
& \mathrm{In} 2 \text { Years }=\mathrm{SI}=\frac{300}{5} \times 2 \\
& \text { BankExam } \Rightarrow \mathrm{Rs} .120 \\
& \mathrm{P}=720-120 \Rightarrow 600 \\
& \mathrm{R}=\frac{120}{2 \times 600} \times 100 \\
& \text { Ban } \mathrm{R}=10 \% \mathrm{msToday} . \mathrm{CO}
\end{aligned}
$$

2. 12000

$$
\sum_{\sum}^{\sum}
$$

$$
\begin{aligned}
& \left(\frac{\mathrm{x} \times 6 \times 2}{100}\right)+\left(\frac{\mathrm{x} \times 9 \times 3}{100}\right]+\left(\frac{\mathrm{x} \times 14 \times 4}{100}\right)=11400 \\
& \left(\frac{3 \mathrm{x}}{95}+\frac{97}{100}+\frac{14}{25}\right)=11400 \\
& \frac{95 \mathrm{x}}{100}=11400 \\
& x=\frac{11400 \times 100}{95}
\end{aligned}
$$

Same Year \& Same Amount

$\left[6 \frac{1}{4}-4\right] \Rightarrow 6-4=2$
Now, We have $2 \frac{1}{4}$

$$
9 \times 25=\mathrm{SI}
$$

Gain in 1 yr .

$$
\frac{225}{2}=112.50
$$

4. $[1164-1008=156] \quad 156 / 3 \times 4=208 ; R=208 / 2 \times 800 \times 100 \quad 13$
5. $7 \mathrm{x} / 20-3 \mathrm{x} / 10=40 \quad \mathrm{x}=(40 \times 20) \quad \mathrm{x}=800$ [Hint : Given Below]

$$
\mathrm{R} \times \mathrm{T}=\frac{\mathrm{SI}}{\mathrm{P}} \times 100
$$

$$
\text { Let } P=x
$$

$$
\frac{5}{Q} \times 12=\frac{\mathrm{SI}}{\mathrm{x}} \times 100
$$

$$
\begin{aligned}
& \frac{3 \theta \mathrm{x}}{10 \theta}=\mathbf{S I} \\
& \mathrm{SI}=\frac{3 \mathrm{x}}{10}
\end{aligned}
$$

\# Compound Interest

\# Formulas

Case 1. When interest is not Compound yearly,
Amount after 't' years $\mathrm{A}=\mathrm{P}[1+\mathrm{r} / \mathrm{n} \times 100]^{\mathrm{nt}}$
$\mathrm{n}=$ no of compounding per year
When interest is compounded half yearly, $\mathrm{n}=2$
compounded quarterly, $n=4$
compounded monthly, $\mathrm{n}=12$

Case 2. When rate \% is no equal every year and interest is compounded yearly
Basic formula :
P [1+r/100] [1+r/100] ...upto 't' times

But as rate \% is not same every year, so
$\mathrm{A}=\mathrm{P}\left[1+{ }^{\mathrm{r} 1} / 100\right]^{\mathrm{tr}}\left[1+\mathrm{r}^{\mathrm{r}} / 100\right]^{\mathrm{tr}} \ldots$. and so on
Where $\mathrm{R} 1=$ Rate\% p.a. for t1 years. and R2 = Rate \% p.a. for t2 years.
Case 3 When interest is compounded yearly but time is in fraction
$\mathrm{T}=5^{3} / 4$ years
$\mathrm{A}=$ (whole part) \times (fraction part of time $)$
$\mathrm{A}=\mathrm{P}[1+\mathrm{r} / 100] 5 \times\left[1+{ }_{3 \mathrm{r} / 4 / 100}\right]$

\# Difference between Compound Interest and Simple Interest

$\mathrm{CI}-\mathrm{SI}=\mathrm{P}[\mathrm{R} / 100] 2$
When time $\mathrm{t}=3$ years
$\mathrm{CI}-\mathrm{SI}=\mathrm{P}\left[\left(\mathrm{R} / 100^{3}+3(\mathrm{R} / 100)^{2}\right]\right.$

\# Examples
 \#1

- If the compound interest on a certain sum for two years at 10% p.a. is Rs 2,100 the simple interest on it at the same rate for two years will be. ($\mathbf{R R B}, \mathbf{2 0 0 9)}$
- The compound interest on a sum for 2 years is Rs. 832 and the simple interest on the same sum for the same period is Rs. 800. The difference between the compound and simple interest for 3 years will be.
- The difference between simple interest and compound interest on a sum for 2 years at 8% when the interest is compounded annually is Rs. 16 , if the interest were compounded half yearly, the difference in one interest would be nearly.
- The difference in C.I and S.I for 2 years on a sum of money is Rs. 160.If the S.I for 2 years be Rs. 2880 , the rate of percent is .

\# Solution

1. 2000

$$
\begin{aligned}
& \mathrm{P}\left(1+\frac{10}{100}\right)^{2}-\mathrm{P}=2100 \\
& \mathrm{P}(1.21-1)=2100 \\
& \mathrm{P} \times 0.21=2100 \\
& \mathrm{P}=\frac{2100}{21} \times 100 \\
& \mathrm{P}=10,000 \\
& \mathrm{SI}=\mathbf{2 0 0 0}
\end{aligned}
$$

2. 98.56

SI $66.56+32=98.56$
3. 04

4.

$$
\begin{aligned}
\mathrm{r} \% & =\frac{160}{1440} \times 100 \\
& =\frac{100}{9} \\
& =11 \frac{1}{9} \%
\end{aligned}
$$

